ME 321: FLUID MECHANICS-I

Dr. A.B.M. Toufique Hasan
Professor
Department of Mechanical Engineering
Bangladesh University of Engineering and Technology (BUET), Dhaka

Lecture-09
28/02/2024
Fluid dynamics

- Bernoulli Equation

Flow system with turbomachinery

Modified Bernoulli equation i.e. the energy equation in a flow system with pump:

No head loss: $\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{P}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}$

$$
h_{P}=\text { head (energy) added to the system }
$$

$$
\left.P_{\text {pump }}=\gamma Q h_{P} \quad \text { (pump hydraulic power }\right)
$$

Pump:
Input: Electrical power Output: hydraulic/mechanical power

With head loss: $\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{P}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{L}$
$h_{L}=$ head loss (major/minor) to be added at downstream

$$
\eta=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{\gamma Q h_{P}}{\left.P_{\text {in }} \text { (elect. power }\right)}
$$

$$
h_{L}=K \frac{V^{2}}{2 g}
$$

Flow system with turbomachinery

Modified Bernoulli equation i.e. the energy equation in a flow system with turbine:

No head loss: $\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{T}$

$$
h_{T}=\text { head (energy) extracted from the system }
$$

$$
P_{\text {turbine }}=\gamma Q h_{T} \quad \text { (turbine hydraulic power) }
$$

Turbine:
Input: hydraulic/mechanical power Output: Electrical power

With head loss: $\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{T}+h_{L}$

$$
\eta=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{P_{\text {in }} \text { (elect. power) }}{\gamma Q h_{T}}
$$

$h_{L}=$ head loss (major/minor) to be added at downstream

Problem 8

The electrical power input to the pump is 10 kW . If the pump has an efficiency of 80%, and the increase in pressure from \boldsymbol{A} to \boldsymbol{B} is 100 kPa , determine the volumetric flow rate of water through the pump in cases of
(i) No head loss between A to B
(ii) Head loss between A to B is 1.25 m .

Solution:

(i) No head loss between A to B:

Bernoulli equation between points A and B for this case is-

$$
\begin{equation*}
\frac{p_{A}}{\gamma}+\frac{V_{A}^{2}}{2 g}+z_{A}+h_{p}=\frac{p_{B}}{\gamma}+\frac{V_{B}^{2}}{2 g}+z_{B} \tag{i}
\end{equation*}
$$

From continuity equation:

$$
\begin{array}{rlrl}
& Q & =v_{A} A_{A}=v_{B} A_{B} & \text { (unknown) } \\
\Rightarrow & Q & =v_{A}\left(\frac{\pi}{4} d_{A}^{2}\right)=v_{B}\left(\frac{\pi}{4} d_{B}^{2}\right) & \\
\Rightarrow & Q & =v_{A}\left(\frac{\pi}{4} 0.5^{2}\right)=v_{B}\left(\frac{\pi}{4} 0.25^{2}\right) \quad \Rightarrow v_{A}=5.09 Q \quad \& \quad v_{B}=20.37 Q
\end{array}
$$

Problem 8

For the pump

$$
\begin{aligned}
& \eta=\frac{P_{\text {out }}}{P_{\text {in }}}\left(\frac{\text { Hydraulic power output }}{\text { Electrical power input }}\right) \\
\Rightarrow & 0.8=\frac{P_{\text {out }}}{10 \times 10^{3}} \\
\Rightarrow & P_{\text {out }}=0.8 \times 10 \times 10^{3} \\
\Rightarrow & \gamma Q h_{P}=0.8 \times 10 \times 10^{3} \\
\Rightarrow & h_{P}=\frac{0.8 \times 10 \times 10^{3}}{\gamma Q} \quad \Rightarrow \Rightarrow h_{p}=\frac{0.8155}{Q}
\end{aligned}
$$

Now consider equation (i)

$$
\begin{aligned}
& \frac{p_{A}}{\gamma}+\frac{V_{A}{ }^{2}}{2 g}+z_{A}+h_{P}=\frac{p_{B}}{\gamma}+\frac{V_{B}^{2}}{2 g}+z_{B} \\
\Rightarrow & \frac{V_{A}{ }^{2}}{2 g}+0+h_{P}=\frac{p_{B}-p_{A}}{\gamma}+\frac{V_{B}{ }^{2}}{2 g}+2 \\
\Rightarrow & \frac{(5.09 Q)^{2}}{2 g}+0+\frac{0.8155}{Q}=\frac{100 \times 10^{3}}{(1000 \times 9.81)}+\frac{(20.37 Q)^{2}}{2 g}+2
\end{aligned}
$$

$$
\Rightarrow \frac{0.8155}{Q}=12.19+19.83 Q^{2}
$$

Problem 8

On solving the last equation to get the flow rate, Q: (through numerical solution)

$$
\begin{align*}
& \Rightarrow \frac{0.8155}{Q}=12.19+19.83 Q^{2} \\
& \Rightarrow Q \approx 0.0664 \mathrm{~m}^{3} / \mathrm{s} \quad\left(\equiv 239 \mathrm{~m}^{3} / \mathrm{hr}, 66.41 / \mathrm{s}\right) \tag{i}
\end{align*}
$$

(ii) Head loss between A to B is 1.25 m :

Bernoulli equation between points A and B for this case is-

$$
\begin{equation*}
\frac{p_{A}}{\gamma}+\frac{V_{A}{ }^{2}}{2 g}+z_{A}+h_{P}=\frac{p_{B}}{\gamma}+\frac{V_{B}{ }^{2}}{2 g}+z_{B}+h_{L} \tag{ii}
\end{equation*}
$$

$$
\begin{aligned}
& \Rightarrow \frac{V_{A}{ }^{2}}{2 g}+0+h_{P}=\frac{p_{B}-p_{A}}{\gamma}+\frac{V_{B}{ }^{2}}{2 g}+2+1.25 \\
& \Rightarrow \frac{(5.09 Q)^{2}}{2 g}+0+\frac{0.8155}{Q}=\frac{100 \times 10^{3}}{(1000 \times 9.81)}+\frac{(20.37 Q)^{2}}{2 g}+3.25
\end{aligned}
$$

; h_{p} is the head developed by the pump h_{L} is the head loss from points A to B

$$
\Rightarrow \frac{0.8155}{Q}=13.44+19.83 Q^{2}
$$

Problem 8

On solving the last equation to get the flow rate, Q: (through numerical solution)

$$
\begin{aligned}
& \Rightarrow \frac{0.8155}{Q}=13.44+19.83 Q^{2} \\
& \Rightarrow Q \approx 0.0604 \mathrm{~m}^{3} / \mathrm{s} \quad\left(\equiv 218 \mathrm{~m}^{3} / \mathrm{hr}, 60.4 \mathrm{l} / \mathrm{s}\right) \quad \text { Ans. (ii) }
\end{aligned}
$$

Volumetric flow rate will be reduced in case of head loss due to fluid friction (major loss) and pipe fittings (minor loss).
Head losses will be covered in detail in ME 323 (L3 T2)

Problem 9

Find the power requirement of the 85%-efficient pump shown in Fig. if the loss coefficient up to A is 3.2 , and from B to $C, K=1.5$. Neglect the losses through the exit nozzle. Also, calculate p_{A} and p_{B}.

Solution:

$$
h_{L}=K \frac{V^{2}}{2 g}
$$

Bernoulli equation between points C and D (across the nozzle) -

$$
\begin{aligned}
& \frac{p_{C}}{\gamma}+\frac{V_{C}^{2}}{2 g}+z_{C}=\frac{p_{D}}{\gamma}+\frac{V_{D}^{2}}{2 g}+z_{D}+h_{L C-D} \\
& \frac{400 \times 10^{3}}{9810}+\frac{\left(0.16 V_{D}\right)^{2}}{2 g}+0=0+\frac{V_{D}^{2}}{2 g}+0+0 \quad ; h_{L C-D}=0 \text { (no loss through the nozzle) } \\
& \therefore V_{D}=28.6 \mathrm{~m} / \mathrm{s} \quad \therefore V_{C}=4.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Problem 9

Considering points B and C -

$$
\begin{gathered}
Q_{B}=Q_{C} \\
\therefore V_{B}=V_{C}=4.6 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Considering points A and C -

$$
\begin{gathered}
Q_{A}=Q_{C} \\
\frac{\pi}{4} 0.04^{2} \mathrm{~V}_{\mathrm{A}}=\frac{\pi}{4} 0.05^{2}(4.6) \\
\therefore V_{A}=7.2 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Bernoulli equation between points 0 and D (surface to exit) -

$$
\begin{aligned}
& \frac{p_{0}}{\gamma}+\frac{V_{0}^{2}}{2 g}+z_{0}+h_{p}=\frac{p_{D}}{\gamma}+\frac{V_{D}^{2}}{2 g}+z_{D}+h_{L 0-D} \\
& 0+0+15+h_{p}=0+\frac{28.6^{2}}{2 g}+0+3.2 \frac{7.2^{2}}{2 g}+1.5 \frac{4.6^{2}}{2 g}
\end{aligned}
$$

$$
; h_{L 0-D}=h_{L 0-A}+h_{L B-D}=K_{A} \frac{V_{A}^{2}}{2 g}+K_{B} \frac{V_{B}^{2}}{2 g}
$$

$$
\therefore h_{p}=36.8 \mathrm{~m}
$$

Problem 9

Pump requirement to run the pump

$$
\begin{aligned}
P_{\text {elect. }} & =\frac{\gamma Q h P}{\eta} \\
& =\frac{(9810)\left(\frac{\pi}{4} \times 0.02^{2} \times 28.6\right)(36.8)}{0.85} \\
& =3.82 \mathrm{~kW} \quad(\text { Ans. })
\end{aligned}
$$

Bernoulli equation between points 0 and A (surface to A) -

$$
\begin{aligned}
& \frac{p_{0}}{\gamma}+\frac{V_{0}^{2}}{2 g}+z_{0}=\frac{p_{A}}{\gamma}+\frac{V_{A}^{2}}{2 g}+z_{A}+h_{L 0-A} \\
& 0+0+15=\frac{p_{A}}{\gamma}+\frac{7.2^{2}}{2 g}+0+3.2 \frac{7.2^{2}}{2 g} \\
& \therefore p_{A}=38.3 \mathrm{kPa}(\text { Ans. })
\end{aligned}
$$

Problem 9

Bernoulli equation between points 0 and B (surface to B) -

$$
\begin{aligned}
& \frac{p_{0}}{\gamma}+\frac{V_{0}^{2}}{2 g}+z_{0}+h_{p}=\frac{p_{B}}{\gamma}+\frac{V_{B}^{2}}{2 g}+z_{B}+h_{L 0-B} \\
& 0+0+15+36.8=\frac{p_{B}}{\gamma}+\frac{4.6^{2}}{2 g}+0+3.2 \frac{7.2^{2}}{2 g}
\end{aligned} \quad ; h_{L 0-B}=h_{L 0-A}+h_{L A-B}=K_{A} \frac{V_{A}^{2}}{2 g}+0
$$

Problem 10

The pump in the figure creates a water jet oriented at 45° (to travel a maximum horizontal distance). System friction head losses are 6.5 m . The jet may be approximated by the trajectory of frictionless particles. What power must be delivered by the pump?
How much electrical power is required to run this operation if pump efficiency is 65% ?

Solution:

For vertical distance traveled by the jet is

$$
V_{f}^{2}=V_{i}^{2}-2 g z
$$

For maximum vertical distance traveled by the jet is

$$
\begin{aligned}
& V_{f}=0 \\
& V_{i}=V_{B} \sin 45^{\circ}
\end{aligned}
$$

$$
\therefore V_{B} \sin 45^{\circ}=\sqrt{2 g Z_{\max }} \quad \therefore V_{B}=\frac{\sqrt{2 g Z_{\mathrm{max}}}}{\sin 45^{\circ}}=\frac{\sqrt{2(9.81)(25)}}{\sin } \approx 31.3 \mathrm{~m} / \mathrm{s}
$$

Problem 10

$$
\begin{aligned}
& \frac{p_{A}}{\gamma}+\frac{V_{A}{ }^{2}}{2 g}+z_{A}+h_{P}=\frac{p_{B}}{\gamma}+\frac{V_{B}^{2}}{2 g}+z_{B}+h_{L} \\
& \Rightarrow 0+0+15+h_{P}=0+\frac{31.3^{2}}{2 g}+2+6.5 \\
& \Rightarrow h_{P}=43.4 \mathrm{~m}
\end{aligned}
$$

Power must be delivered by the pump $\quad P_{P u m p}=\gamma Q h_{P}=(1000)(9.81)\left(\frac{\pi}{4}\left(5 \times 10^{-2}\right)^{2}(31.3)\right)(43.4)$

$$
\Rightarrow P_{\text {Pump }}=26.2 \mathrm{~kW}
$$

Electrical power required for this operation

$$
\begin{aligned}
\eta=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{\gamma Q h_{P}}{P_{\text {in }}(\text { elect. power })} & \Rightarrow 0.65=\frac{26.2}{P_{i n}} \\
& \Rightarrow P_{\text {in }}=40.3 \mathrm{~kW} \quad \text { (Ans.) }
\end{aligned}
$$

Problem 11

The pump-turbine system in the figure draws water from the upper reservoir in the daytime to produce power for a city. At night, it pumps water from lower to upper reservoir to restore the situation. For a design flow rate of $50,000 \mathrm{lit} / \mathrm{min}$ in either direction, the friction head loss is 5 m .
Estimate the power in kW
(a) extracted by the turbine and
(b) delivered by the pump.

Solution:

Problem 12

When the pump in Fig. draws $220 \mathrm{~m}^{3} / \mathrm{h}$ of water at $20^{\circ} \mathrm{C}$ from the reservoir, the total friction head loss is 5 m . The flow discharges through a nozzle to the atmosphere. Estimate the pump power in kW delivered to the water.

Problem 13

Water flows from a reservoir through a 0.76 m-diameter pipeline to a turbine-generator unit and exits to a river that is 35 m below the reservoir surface. If the flow rate is $9200 \mathrm{~m}^{3} / \mathrm{hr}$, and the turbine-generator efficiency is 88%, calculate the power output.
Assume the loss coefficient in the pipeline (including the exit) to be $K=2$.

